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Abstract

A discrete Eulerian approach to solving the time-dependent Schrödinger’s equation in a time varying non-uniform magnetic field
is presented. Specifically, two simulations were designed and developed. The first was a method for simulating a magnetic field of
arbitrarily shaped conductors given the magnetisation at sampled points in the conductor’s volume. The developed method allows
for scalability as the magnetic moment spatial resolution is independent from the magnetic field one, allowing for a variation in the
grid size as a function of location. The second was a method for numerically solving Schrödinger’s equation on an arbitrary grid.
Initial conditions, numerical schemes, and qualitative results are presented in detail.

1. Background

In this section the scientific concepts used in the simulation
are presented in detail. Specifically, the ideas presented are:

1. Stern Gerlach Experiment.
2. Magnetic Fields of Permanent Magnets.
3. Scrödinger’s equation for a particle in a magnetic field.

1.1. Stern Gerlach Experiment
The Stern Gerlach experiment is perhaps one of the most in-

triguing scientific conceptions righteously earning its place in
almost every introductory Quantum Mechanics book in an ex-
planation of spin. The apparatus of the experiment is seen in
Fig. 1. A specially constructed magnet, designed such that there
a non uniform magnetic field across it, is placed in parallel with
a beam of silver atoms [1]. The result is an unexpected spatial
distribution of atomic hits on a screen placed directly after the
magnet.

Figure 1: Stern Gerlach Device schematic. Incoming beam of particles focused
from an oven source, passing through a magnetic field, will end up in separation
according to the particle’s spin. Adapted from [1]

Specifically, the silver atoms seemed to be deflected from
the center of the beam either up or down, with equal probabil-
ity, as seen in Fig. 1. This was quite perplexing as classically

a uniform distribution of hits was expected in the screen. This
discrepancy led to the idea that the individual atoms are inter-
acting with the magnetic field themselves, as if they had their
own magnetic field [2]. This interaction was determined to be
because of the spin of the particles themselves [2]. Specifically,
spin was the quantum interpretation of the angular momentum
of a particle [2]. In the case of silver atoms, that particle was
the lone outer shell electron, as it was able to orbit freely around
the massive atom [3]. The electron’s spin up or spin down was
enough to visibly deflect the entire atom in that magnetic field.

The goal of this project is to accurately simulate the be-
haviour of a particle moving through that complex magnetic
field, and therefore see how it interacts with its environment. In
the following sections, this qualitative description will be more
rigorously formulated.

1.2. Magnetic Fields of Permanent Magnets

As is evident from the above description of the experiment,
in order to be able to simulate the behaviour of the particles in a
magnetic field, we need the field itself. To do so, there are two
things that are needed to be taken under consideration.

1. Finding the magnetisation of a piece of ferromagnetic ma-
terial

2. Solving for the magnetic field from that magnetisation

To tackle the first, it is possible to use statistical mechanics.
Specifically, each atom of the conductor is going to orbit rela-
tivistically about its center producing a virtual current loop I.

I =
e
T

=⇒ ~J =
e~v

2πr

where e is the charge of the atom, T is its orbital period, ~v its
velocity, and r its radius of rotation. Therefore, we can find the
magnetic moment of that virtual current loop like so:

~µ = ~J × ~A =
e~L
2m
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where ~L is the quantised angular momentum of the atom.
Quantum mechanically, this momentum can be expressed like:
~S = ±~/2 Ŝ as spin. Therefore, by plugging in our spin and
correcting for relativistic motion we get (1) [3].

~µ = γ~S (1)

where γ = e
m is the gyro metric ratio of the particle.

As a result, we can think that under the presence of an exter-
nal magnetic field the dipoles in the conductor will align with
it. If so then we can think of a big ferromagnetic conductor as a
collection of current loops. Those loops will cancel each other
at points, and thus end up adding up to form a virtual surface
current on the surface of the conductor. We can actually model
that using Stokes Theorem. Namely the total magnetisation can
be expressed as:

~M =
∑

i

~µi

Since atoms are freakishly tiny, the continuous approxima-
tion makes sense here, and by using Stoke’s theorem we obtain:

~J = ∇ × ~M (2)

The idea however, is to obtain the original distribution of the
magnetic moments µi for the patches of conductor in the metal.
We can do this using the Ising Model, and obtain an equation
for the hamiltonian of the system like so.

H =
∑

i

−µi~B +
∑
〈i, j〉

Ii j~S i · ~S j (3)

where Ii j is some interaction energy between atoms i,j and
~S i is the spin vector for particle i. We could model this in the
canonical ensemble that could be solved for a material with suc-
cessive over relaxation (SOR). Therefore, after obtaining the
magnetisation of the material, we can model the conductor as
slices of current on the plane perpendicular to the magnetisa-
tion using (2). After doing so, we could use the Biot Savart law
to find the magnetic field at any point ~r away from that magnet.

~B(~r) =
µ0

4π

∫∫∫
V

1∣∣∣~r∣∣∣ ~J × ~r dV (4)

In following sections the discretisation process will be evi-
dent.

2. Schrödinger’s Equation for particle in magnetic field

The next part of the project was to be able to simulate
Schrödinger’s Equation for a particle in a magnetic field. To
formulate that equation we first need to write down the Hamil-
tonian H of such particle. To do this we start form the Lorenz
force:

~FL = q~E + q~v × ~B (5)

From that we can obtain an expression for the potential en-
ergy:

U = V − ~µ · ~B = V − γ~S · ~B

where V is the electric potential energy term. Therefore, we
can write the Hamiltonian as H = T − U including a transna-
tional kinetic energy component for the particle as seen in (6).

H =

∣∣∣~p∣∣∣2
2m
− γ~S · ~B + V (6)

where ~p is the momentum of the particle. Therefore, we can
now express the Hamiltonian operator Ĥ as (7) by replacing
the spin with the spin operator S̃ , and the momentum by the
momentum operator p̂.

Ĥ = −
~2

2m
∇2 − γS̃ · ~B + V (7)

Finally, we are ready to express the time dependent
Schrödinger’s equation for a particle in a magnetic field.

ĤΨ = i~
∂Ψ

∂t

−
~2

2m
∇2Ψ − γ~B · S̃ Ψ + VΨ = i~

∂Ψ

∂t
(8)

From now on, for the sake of space conservation the electric
potential term V is dropped when referred to the Schrödinger’s
Equation. So now, all there’s left is to solve it.

3. Methods

The methods section is also split into two. First, the methods
employed to solve for the magnetic field are explained in detail,
followed by the methods used to solve Schrödinger’s equation.

3.1. Magnetic Field

To solve for the magnetic field a multiple step process was
employed. The requirements are described below.

1. Represent the conductor geometry as multiple surface cur-
rent slices based on the magnetisation.

2. Discretize Biot Savart Law (4).
3. Multithread to increase performance.

Firstly, and more obviously, the mesh of the magnet is ac-
tually represented by multiple vectors on its surface as seen in
Fig. 2. This happens by picking some constant spatial resolu-
tion dx. With that resolution we discretize the space and then
at every cube that intersects with the mesh is assigned a cur-
rent obtained by (2). Then we can essentially store the entire
mesh in a linear list of tuples and each containing two vectors:
the position vector of the mesh point, and the current density
vector of that point. In fact we can formalise this as creating an
array with elements q such that each element is of the following
form:

qi = (~ri, ~Ji)
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Figure 2: Generated mesh of Stern Gerlach Device magnet. Perpendicular uniform magnetisation is assumed. The blue arrows represent virtual surface currents.

By doing so, we can move on into discretizing Biot Savart
Law.

To discritize our magnetic field equation, it was necessary to
form that predescribed mesh list. Now, we can use that list to
replace the volume integral in 4 with a sum over all the mesh
points as seen in (9)

~B(~r) =
µ0

4π

∑
i

~qi1 × (~r − ~qi0)∣∣∣~r − ~qi0
∣∣∣ (9)

where ~r − ~qi0 is the distance of meshpoint i to the point ~r
where we want to calculate the magnetic field. Therefore, once
having this, it is possible to calculate the magnetic field at any
point without regard to the spatial grid implemented. There-
fore, the strength of this process is in being able to render the
magnetic field of a smaller region with high resolution and then
export it to be used in a different simulation.

However this process takes a significant amount of computa-
tional time. Specifically, if there are n points in the mesh and
we have an N × N × N grid the complexity is O(nN3) which is
significantly disappointing.

That’s why multithreading was implemented to decrease the
computation time needed to calculate the magnetic field. Fur-
thermore, the way this problem is set up is very easy to multi-
thread, since all calculations are independent. The python code
for multithreading the program can be seen below. Essentially
we are trying to take the for loop that calculates the sum in (9)
and share its operations with C available cores.

As is seen from the code in Listing 1, there is only 1 common
shared memory space between the processes. Specifically, that
is implemented as a Queue that each process has access to in
order to dump the results. The results are formed as tuples of
the position (i, j, k) and the magnetic field at that position. This
is later used to reassemble the magnetic field after all the data
is collected from the queue back in the main process. Each
process is split up with all the arguments it needs from the main
thread, effectively speeding up processing by limiting access
requests to memory across nodes. This code was executed
on NYUAD’s High Performace Computing Infrastructure,

Dalma. Specifically, 4 Nodes with 28 CPUs each were used,
bringing up to a total of 112 active CPUs. Results are seen in
the following section.

1 # Generate the argument lists and split

2 if VERBOSE: print("Generating Argument Lists")

3 iters = itertools.product(range(0,Nx), range(0,

Ny), range(0, Nz))

4 args = np.array ([[i,j,k] for i,j,k in iters ])

5 args = np.array_split(args ,CPUs ,axis = 0)

6

7 # Create a queue to store all the incoming

results

8 Q = Queue()

9

10 # Generate the processes

11 if VERBOSE: print("Generating Processes List")

12 processes = []

13 for arg in args:

14 processes.append(Process(target=process ,args

=(Q,axes ,arg ,Jp ,dx,mu0 ,delta)))

15

16 # Start Processes

17 if VERBOSE: print("Starting processes")

18 for p in processes:

19 # p.daemon = False

20 p.start()

21 if VERBOSE: print("\t",p.name ," started.")

22

23 results = []

24 # Reassemble the whole thing and return

25 if VERBOSE: print("Reassembling")

26 while True:

27 running = any(p.is_alive () for p in processes

)

28 while not Q.empty ():

29 results.append(Q.get())

30 if not running:

31 break

32

33 reassemble(B,results)

Listing 1: Multithreaded Magnetic Field calculation
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3.2. Wavefunction Solving

To solve for the wavefunction and produce a final numerical
scheme there are multiple steps to be taken.

1. Nondimensionalize Schrödinger’s Equation.
2. Obtain Leapfrog relationships for the real and imaginary

parts.
3. Obtain a scheme for calculating the divergence.

First step is therefore to nondimensionalize Schrödinger’s
equation (8). To do so we can start nondimetionalizing the rel-
evant quantities as seen in (10)-(13).

S̃ = ~s̃ (10)

~r = ρ~R (11)
t = τT (12)

~B = β~b (13)

Spin, is the easiest quantity to nondimensionalize because
it has values of ± ~2 so we can just take the reduced Planck’s
constant out. For, time, and magnetic field, we can take out a
parameter, as seen above. This way, we can find relationships
for each one based on a free parameter. To do this let’s express
(8) with the nondimentionalization constants and quantities.

−
~2

2mρ2∇
2Ψ − γ~β~b · s̃Ψ =

i~
τ

∂Ψ

∂T

if we divide by mρ2

~2 we obtain:

−
1
2
∇2Ψ −

mρ2γβ

~
~b · s̃Ψ = i

ρ2m
~τ

∂Ψ

∂T

Therefore, we can express a relationship for τ (14) based on
the free parameters ρ and β.

τ =
ρ2m
~

(14)

Then by plugging in (14) our equation becomes:

−
1
2
∇2Ψ − τγβ~b · s̃Ψ = i

∂Ψ

∂T

Then we can express another constraint for τ (15).

τ =
1
γβ

(15)

By plugging in (15) we obtain our final nondimentionalized
Schrödinger’s equation seen in (16).

−
1
2
∇2Ψ − ~b · s̃Ψ = i

∂Ψ

∂T
(16)

Now the only thing left to do is to solve the system created
by the two constraints on τ seen in (14) and (15). And therefore
we obtain the following relationships for τ and ρ respectively,
in terms of β as a free parameter.

τ =
1
γβ

=
m
qβ

(17)

ρ =

√
~

mγβ
=

√
~

qβ
(18)

Now that we have the nondimentionsalized version of our
equation as well as the relevant parameters we can begin to draft
a numerical scheme for solving the equation. To do that let’s
express the discrete wavefunction at time n, and coordinates
i,j,k in terms of its real and imaginary components.

Ψn
i jk = Rn

i jk + iIn
i jk (19)

We can actually express these in terms of generalised coordi-
nates (20) in order to conserve some space.

Ψn
q = Rn

q + iIn
q (20)

Therefore, we can plug in (20) in (16) to obtain the following
monstrosity:

−
1
2
∇2R − i

1
2
∇2I − ~b · s̃R − i~b · s̃I = i

∂R
∂T
−
∂I
∂T

However, by separating the real and imaginary components
we can obtain individual temporal differential relations for the
real (22) and imaginary (21) components.

1
2
∇2R + ~b · s̃R =

∂I
∂T

(21)

−
1
2
∇2I − ~b · s̃I =

∂R
∂T

(22)

As we can see each component strictly depends on the other.
This means that we can actually obtain temporal leapfrog rela-
tions for each component [4]. Specifically, we can express R in
the integer time steps and I in the halves. As a result we obtain:

1
2
∇2Rn + ~b · s̃Rn =

∂In+ 1
2

∂T
(23)

−
1
2
∇2In+ 1

2 − ~b · s̃In+ 1
2 =

∂Rn+1

∂T
(24)

Now that we have the relationships, we can discretize our
equation. To do this we can express the time derivative in the
first order using forward Euler differentiation like so, with a
step ∆T :

∂In+ 1
2

q

∂T
=

1
∆T

(
In+ 1

2
q − In− 1

2
q

)
Now, we need to express the divergence term of the equation.

to do this, we are going to use R as an example, but the formula
is the same for any quantity. Specifically, we can start from
expressing ∇R with centered differentiation.
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Figure 3: Output for the simulation of the magnetic field. Top. Magnetic field due to a linear current passing through space. Bottom. Magnetic field of the Stern
Gerlach Device with vertical magnetisation. The plots on the left represent the magnitude of magnetic field at that point. The warmer the color the higher the
magnitude

∇Rn
i jk =

1
∆r

∑
q

Rn
q+∆r − Rn

q−∆r

Then we can apply forward first order Euler differentiation
on Rn

q+∆r and backward on Rn
q−∆r. Therefore obtaining a rela-

tionship for the divergence term.

∇2Rn
i jk =

1
∆r2

∑
q

Rn
q+∆r − 2Rn

q + Rn
q−∆r

Thus, we can finally express a discrete relationship for the
real and imaginary components incorporating everything so far
in (26) and (25).

~b · s̃Rn +
1

2∆r2

∑
q

Rn
q+∆r − 2Rn

q + Rn
q−∆r =

∂In+ 1
2

∂T
(25)

−~b · s̃In+ 1
2 −

1
2∆r2

∑
q

In+ 1
2

q+∆r − 2In+ 1
2

q + In+ 1
2

q−∆r =
∂Rn+1

∂T
(26)

4. Results

Finally we are able to actually provide some results! This
section is split in two subsections one is the Magnetic Field
simulation results, and the other is the actual wavefunction re-
sults in 1D, 2D, and 3D.

4.1. Magnetic Field Results

Fig. 3 shows two different results of the magnetic field.
Specifically, the top one is a test that is analytically solvable
so that to ensure that the algorithm is working properly. The
top is therefore the magnetic field produced by a straight wire.
Once this result was verified the actual Stern Gerlach device
was modelled and calculated as seen in the bottom.

4.2. Wavefunctions in Multiple Dimensions

In order to test whether the model is correct, the solution for
a free particle (27) in 0 external field was used as the initial
condition and then the system was left to time evolved. This is
seen in Fig. 4.
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Ψ = A exp−

∣∣∣~r∣∣∣2
σ2 (27)

After that example was verified, another test was carried out,
the barrier test. Essentially the initial wavefunction seen in (28)
was placed in a domain with a very high potential (∼ 104V) at
a spherical volume around the center of the field. This example
was carried out in 1D (Fig. 5), 2D (Fig. 6), 3D (Fig. 7).

Ψ = Ae−
|~r|2

σ2 ei~k·~r (28)

Finally, the same initial wavefunction was used in order to
model the particle going through the magnetic field of the Stern
Gerlach Device. This simulation is seen in Fig. 8. The ini-
tial velocity of the particle was determined using the Maxwell-
Boltzmann distribution for a particle in the original SGD fur-
nace. It is also worth mentioning that the probability density
shown in the figure is the probability density for a spin up par-
ticle. Both wavefunctions were calculated (as needed by the
Pauli spin matrices) however, only the spin uo was plotted.

5. Conclusion

In this project a time dependent simulation of a Stern Gerlach
device was developed, by first simulating the magnetic fields of
arbitrary ferromagnetic meshes, and then numerically solving
the time dependent Schrödinger’s Equation using Leapfrog and
FTCS to obtain a 2nd order accurate solution [4] of the wave-
function in said magnetic field.

In terms of analysing the results, it is preferable to start form
the test wavefunction results seen in Fig. 4. This is supposed to
represent the time evolution of a free particle in space, and as
we see, in both cases (1D and 2D) we obtain the same pattern.
The probability distribution over time tends to spread out, lead-
ing to the conclusion that in the time evolution of the system the
position becomes more uncertain as we become more certain of
the zero momentum of the particle.

In the moving cases in 1D seen in Fig. 5, 2D seen in Fig. 6,
and 3D seen in Fig. 7, we observe once more a similar pattern.
This time we still see the expected spreading out of the proba-
bility distribution over time, but also in interesting interaction
when the particle is close to the potential boundary. Specif-
ically, the wavefunction frequency increases dramatically and
falls out of phase giving rise to the very inhomogenous prob-
ability distribution near the boundary. This behaviour is seen
in all 3 cases. Furthermore, we also observe tunneling in 3D
(the potential was too high for the other two cases in order for
tunnelling to appear). Specifically, after the particle is being
reflected by the boundary we see on the last frame of Fig. 7
that a volume of more than 1/2 maximum probability appears,
indicating tunnelling through the boundary.

Finally, in the simulation of the Stern Gerlach device we ob-
serve all the previous trends as well as a preferential direction
of the spin up component of the final wavefunction towards the
up direction. The interesting effect here, was that the probabil-
ity distribution appeared to be translated in the ẑ direction but

was in a standing wave in the rest of the time. An interesting
further research would be to analytically solve this scenario and
see how do the x̂ and ŷ components of the magnetic field lead
to that standing wave behaviour.

The entire material of the project, including animations,
code, and failed attempts can be found here: https://

github.com/PanosEconomou/CPFP.
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Figure 4: Unobstructed stationary wavefunction solution for a free particle in 1D and 2D. Top. Result in 1D. Bottom. result in 2D
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Figure 5: Time dependent wavefunction moving in a field with a potential at x=0.6. Time steps move from left to right, up to down. The parameters are:
ρ = 2.56e − 08 m,τ = 1.12e − 06 s, and β = 1 T
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Figure 6: Time dependent wavefunction moving in a field with a potential at ~r = 0.5x̂ + 0.5ŷ. Time steps move from left to right, up to down. The parameters are:
ρ = 2.56e − 08 m,τ = 1.12e − 06 s, and β = 1 T
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Figure 7: Time dependent wavefunction moving in a field with a potential at ~r = 0.5x̂ + 0.5ŷ + 0.5ẑ seen in yellow. The isosurface where the probability is half of
hte maximum is shown. Time steps move from left to right, up to down. The parameters are: ρ = 2.56e − 08 m,τ = 1.12e − 06 s, and β = 1 T
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Figure 8: Time dependent wavefunction moving in the Stern Gerlach Device Field. The isosurface where the probability is half of hte maximum is shown. Time
steps move from left to right, up to down. The parameters are: ρ = 2.56e − 08 m,τ = 1.12e − 06 s, and β = 1 T
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